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Abstract

We present a measurement of the dijet invariant mass spectrum and search for new
particles decaying to dijets at CMS in pp collisions at

√
s = 7 TeV with 7.2 nb−1 of

data collected in the April - May 2010 running period. The dijet mass distribution of
the two leading jets in the pseudorapidity region | η |< 1.3 is measured and com-
pared to QCD predictions from PYTHIA and the CMS detector simulation. We fit the
observed dijet mass spectrum with a parameterization, search for dijet resonances,
and set upper limits at 95% CL on the resonance cross section. These generic cross
section limits are compared with theoretical predictions for the cross section for sev-
eral models of new particles: axigluons, flavor universal colorons, excited quarks, E6
diquarks, Randall Sundrum Gravitons, W’, Z’ and string resonances. We exclude at
95% CL string resonances with mass M < 1.0 TeV, the first exclusion of this model in
the dijet final state.
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Maxime Gouzevitch (CERN)



Outline
• Measurement of Dijet Mass Spectrum

✓ Data Sample and Event Selection 

✓ Trigger Efficiency and Basic Distributions 

✓ Dijet Mass Distribution and QCD 

✓ Fits for Background

• Search for Dijet Resonances

✓ Signal Modeling 

✓ Limits on Dijet Resonances

‣ Statistical Error Only

‣ Including Systematic Uncertainties

• Conclusion
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Part I.
Measurement of Dijet Mass 

Spectrum



Data and Event Selection
• Dataset

✓ (135808 - 141949)  /JetMETTau/Run2010A-Nov4ReReco_v1/RECO
 (141950 - 145761)  /JetMET/Run2010A-Nov4ReReco_v1/RECO
 (145762 - 149442)  /Jet/Run2010B-Nov4ReReco_v1/RECO

✓ Official JSON Files

✓ Estimated Integrated Luminosity: 35.8 pb-1 (with 11% uncertanity)

• Trigger

✓ Technical Bit TT0 (for bunch crossing)

✓ HLT_Jet140U_v3 (un-prescaled)

• Event Selection

✓ Good primary vertex

✓ At least two reconstructed jets

‣ AK7caloJets

‣ JEC: L2+L3, "Summer10" + Residual (v2) data-driven relative

✓ Require both the leading jets to satisfy |η|< 2.5 and |Δη|<1.3

‣ Suppress QCD process significantly.

✓ Require both leading jets passing the "loose" jet id & Mjj > 489 GeV
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Trigger Efficiency
• Start analysis of Dijet Mass distribution at 489 GeV.

✓ 489 GeV chosen for full trigger efficiency. 
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Dijet Data Quality
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JES Uncertainty
• We introduce new JES uncertainty.

✓ It varies from 3% to 5 % as a function dijet mass.

✓ It was considered as 10% in previous studies.
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Dijet Mass and QCD
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• The data is in good agreement with the full CMS simulation of QCD from PYTHIA.

✓ PYTHIA QCD prediction is normalized by a factor of 1.3
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Dijet Mass and Fit
• We fit the data to a function containing 4 parameters used by CDF Run 11 and ATLAS.

• We get a good fit.

• No evidence for new physics
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Pulls

5. Measurament of Dijet Mass Spectrum Sertac Ozturk

QCD MC prediction is in good agreement with the data.
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Figure 5.11 The dijet mass spectrum data (points) divided by the QCD PYTHIA prediction.

The band shows the sensitivity to a 10% systematic uncertainty on the jet energy scale.

The data points and corresponding uncertainty are listed in Table 5.X.

5.2.1 Dijet Mass Spectrum and Fit

Dijet mass spectrum is compared to a fit in Fig.5.X. The parametrization of smooth fit

function is

dσ
dm

= p0
(1−X)p1

X p2+p3 ln(X) (5.2)

where x = m j j/
√

s and p0,1,2,3 are free parameters. The (1−X) term is motivated by

the parton distribution fall of with fractional momentum. The X−p3 ln(x) factor describes
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Another Fit Parametrization

• In addition to the default fit, 
two alternate functional forms 
are considered.

• The data is smooth and all 
considered fit parametrization 
give a good fit.

11 Sertac Ozturk

Another Fit Parametrization

• In addition to the default fit, 2 
alternate functional forms are 
considered.

• Default 4 parameters fit gives 
best result.
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2.8 Dijet Mass Spectrum and Fit 27

The parameterizations are listed in equation 3.371

dσ

dm
=

P0 · (1−m/
√

s )P1

mP2
, (Default Fit with 3-parameters)

=
P0

(P1 + m)P2
, (Alternate Fit A with 3-parameters)

=
P0 ·

�
1−m/

√
s + P3 · (m/

√
s)2

�P1

mP2
(Alternate Fit B with 4-parameters).

=
P0 · (1−m

√
s)p1

(m/
√

s)p2+p3ln(m
√

s)
(Alternate Fit C with 4-parameters).

(3)

The default three parameter fit is motivated by QCD. It includes a power law fall off with mass372

in the denominator, motivated by the QCD matrix element. It also has a term in the numerator373

motivated by the parton distribution fall off with fractional momentum (1− m/
√

s)P1 (where374 √
s = 7000 GeV is the center-of-mass energy). This three parameter function was used by CDF375

in run IA. We find that the default fit gives a good χ2/DF of 17.1/18 (probability 52%), and this376

is the best fit we can find of our data.377

We have also explored three alternate parameterizations. All parameterizations have a power378

law in them, because without a power law we cannot get a good fit with only 2, 3 or 4 pa-379

rameters. A 2-parameter fit with just a power law and a constant, p0/mp1 , gives a reasonable380

fit χ2/DF = 19.3/19 (probabilty 44%), but we have been advised to only consider parame-381

terizations with the same number of parameters as our default fit or greater, in order to have382

reasonable flexibility in the fit parameterization. The 2-parameter fit has only one shape pa-383

rameter. Alternate fit A is a 3-parameter fit with a modified power law, obtained by simply384

adding an offset to the mass, and we get a good fit with χ2/DF = 17.9/18 (probability 46%).385

Alternate fit B is a 4-parameter fit very much like our default fit, but we have added a term386

quadratic in m/
√

s to the term in the numberator to give the fit a little more flexibility to de-387

scribe data at high mass tails. This 4 parameter function was used by CDF in run IB [16]. We388

find that this function gives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).389

Alternate fit C is another 4 parameter function which again has our characteristic numerator390

and denominator but includes another term in the power of the power law, again just to give391

the fit more flexibiliity. This 4 parameter function was used by CDF in run II [14]. Again we392

find this function ives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).393

Figure 18 shows the fractional differences between data and the fit function, (data-fit)/fit, and394

the pulls, (data-fit)/error, for all four fits.395

Notice from both Fig. 17 and 18 that the largest difference from the default 3-parameter fit396

occurs when using the alternate fit A with 3 parameters. We will use this alternate 3-parameter397

function from fit A to find our systematic uncertainty on the background due to the fit parame-398

terization. Notice that there is very little difference between the default 3-parameter fit and the399

alternate 4-parameter fits which were introduced to give the 3-parameter fit more flexibility.400

From this we conclude that no more flexibility is needed to fit this data, and we have found the401

best possible smooth fit with a few parameters. When using these parameterizations to find402

systematic uncertainties on the background we do not find as large a systematic as with the403

alternate 3-parameter function.404
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Part II.
Search For Dijet Resonance



Resonance Shapes
• We have simulated dijet resonances using CMS simulation + 

PYTHIA.

✓ Three types of parton pairs

‣ gg→G→gg,  qg→q*→qg and qq→G→qq

• qq, qg and gg resonances have different shape mainly due to FSR. 

✓ The width of dijet resonance increases with number of 
gluons because gluons emit more radiation than quarks.

• We search for these three basic types of narrow dijet resonance 
in our data.
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Fit and Signal
• We search for dijet resonance signal in our data.

• Excited quark signals are shown at 1 TeV and 1.8 TeV.

• String resonances are shown at 1.5 TeV and 2.5 TeV.

14

Dijet Mass (GeV)
500 1000 1500 2000 2500

/d
m

 (p
b/

G
eV

)
d

-510

-410

-310

-210

-110

1

10

210

 / ndf 
2

 25.14 / 27

Prob   0.5669

p0        9.932e-06± 0.0002623 

p1        0.1669± 11.01 

p2        0.01486± 4.434 

p3        0.00502± -0.119 

 / ndf 
2

 25.14 / 27

Prob   0.5669

p0        9.932e-06± 0.0002623 

p1        0.1669± 11.01 

p2        0.01486± 4.434 

p3        0.00502± -0.119 

)-1CMS Data (35.8 pb
Fit
QCD Pythia + CMS Simulation
10% JES Uncertainty
Excited Quark
String

S (1.5 TeV)

S (2.5 TeV)

q* (1 TeV)

q* (1.8 TeV)

 = 7 TeVs

| < 1.3| < 2.5  &  ||

Dijet Mass (GeV)
500 1000 1500 2000 2500

D
at

a 
/ F

it
1

10

Graph

q* (1 TeV)

S (1.5 TeV) S (2.5 TeV)

q* (1.8 TeV)

)1CMS Data (35.8 pb
 = 7 TeVs

| < 1.3| < 2.5  &  ||



Limits with Stat. Error Only
• 95% CL Upper limit with Stat. Error. Only compared to cross section for various model.

✓ Show quark-quark and quark-gluon and gluon-gluon resonances separately.

✓ gluon-gluon resonance has the lowest response and is the widest and gives worst limit.
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Systematic Uncertainties
• We found the uncertainty in the dijet 

resonance cross section from following sources

✓ Jet Energy Scale (JES)

‣ Uncertainty varies from 3% to 5 % as 
function of dijet mass

✓ Jet Energy Resolutin (JER)

‣ JetMet guidance is 10% in JER 
uncertainty

✓ Choice of background parametrization

‣ We consider the functional form with 4 
parameter

✓ Luminosity

‣ Uncertainty assumed to be 11%

• We add in quadrature the individual systematic 
uncertainties

✓ Total systematic uncertainty varies from 
19% to 37% depending on resonance mass 
and type
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Incorporating Systematic
• We convolute posterior PDF with Gaussian systematics 

uncertainties.

✓ Posterior PDF including systematics is broader and gives higher 
upper limit.
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Incorporating Systematic
• We convolute posterior PDF with Gaussian systematics 

uncertainties.

✓ Posterior PDF including systematics is broader and gives 
higher upper limit.
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30 4 Systematic Uncertainties

4.3 Background Parameterization398

We considered two others functional forms with 2 and 4 parameters to parametrize the QCD399

background as discussed in section 2.6.1 and shown in Equation 3. Fig. 25 show comparison400

of fits with the data points. We find that the 2 parameter form, which is a marginal fit to our401

data, gives the largest fractional change over the vast majority of resonance masses, and we402

conservatively use it for our background parametrization systematic at this time.403
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Figure 25: Left) The data and the default 3 parameter fit and the 2 and 4 parameter fits use to
evaluate the systematics. Right) Fractional absolute change in the limit when using th 2 and 4
parameter fits for the background.

4.4 Total Uncertainty404

We determine 1σ change for each systematic uncertainty in signal that we can discovery or405

exclude. In addition to the sources already mentioned, we include an uncertainty of 10% on406

the integrated luminosity.407

To find total total systematics, we add the these 1σ changes as quadrature. The individual and408

total systematic uncertainties as a function of resonance mass are illustrated in Fig. 26. Absolute409

uncertainty in each resonance mass is calculated as total systematics uncertainty multiply by410

upper cross section limit.411

4.5 Incorporating Systematics in the Limit412

We convolute the posterior probability density with a Gaussian for each resonance mass. The413

equation of convolution is414

L(σ) =
� ∞

0
L(σ�)G(σ, σ�)dσ� (7)

Where L(σ�) is the posterior probability density at signal cross section σ�, and G(σ, σ�) is the415

Gaussian probability from systematics to observe σ if σ� is expected. The width of the Gaussian416

is taken as the absolute uncertainty in each resonance mass, equal to the fractional uncertainty417

times the limit on the cross section. This procedure, identical to what was done at CDF, con-418

servatively assigns the same width to the Gaussian in units of pb at each point in the posterior419

G: Gaussian distribution with
RMS width equal to systematic 

uncertainty in cross section
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Effect of Systematics on Limit
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• 95% CL Upper limit with Stat. Error. Only and Including Sys. 
Uncertainties are shown separately

• Systematic uncertainties reduce the mass limit by 60 GeV for both 
string resonance and excited quark.
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Results
• We exclude the following mass 

ranges with 35.8 pb-1 data:

• String 

✓ 0.60<M(S)<3.10 TeV

• Excited Quark

✓ 0.60<M(q*)<1.80 TeV

• Axigluon/Coloron

✓ 0.60<M(A)<1.78 TeV

• E6 Diquark

✓ 0.60<M(D)<2.06 TeV 

• W`

✓ 0.60<M(W`)<0.62 TeV
19
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Conclusion
• We have presented an update on dijet resonance analysis based 

on full 2010 data.

• The CMS dijet mass spectrum extends to 2.7 TeV with 35.8 pb-1 
data.

• The dijet mass data is in good agreement with a full CMS 
simulation of QCD from PYTHIA.

• There is no evidence for dijet resonances.

• We have generic cross section upper limits on qq, qg, gg 
resonances that can be applied to any model.

• We have significant extension on mass limits on dijet resonance 
models, beyond published results.

• We will seek approval of this analysis for the winter conferences.
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